An Asymptotic Theory for Linear Model Selection
نویسندگان
چکیده
In the problem of selecting a linear model to approximate the true unknown regression model, some necessary and/or sufficient conditions are established for the asymptotic validity of various model selection procedures such as Akaike’s AIC, Mallows’ Cp, Shibata’s FPEλ, Schwarz’ BIC, generalized AIC, crossvalidation, and generalized cross-validation. It is found that these selection procedures can be classified into three classes according to their asymptotic behavior. Under some fairly weak conditions, the selection procedures in one class are asymptotically valid if there exist fixed-dimension correct models; the selection procedures in another class are asymptotically valid if no fixed-dimension correct model exists. The procedures in the third class are compromises of the procedures in the first two classes. Some empirical results are also presented.
منابع مشابه
Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples
The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملAsymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression
Abstract: We study the asymptotic properties of Lasso+mLS and Lasso+ Ridge under the sparse high-dimensional linear regression model: Lasso selecting predictors and then modified Least Squares (mLS) or Ridge estimating their coefficients. First, we propose a valid inference procedure for parameter estimation based on parametric residual bootstrap after Lasso+ mLS and Lasso+Ridge. Second, we der...
متن کاملExpectation Propagation for Approximate Inference: Free Probability Framework
We study asymptotic properties of expectation propagation (EP) a method for approximate inference originally developed in the field of machine learning. Applied to generalized linear models, EP iteratively computes a multivariate Gaussian approximation to the exact posterior distribution. The computational complexity of the repeated update of covariance matrices severely limits the application ...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کامل